
In this lecture, we will learn about the processor board on Pybench, how it works
with the motor driver module, and how timers are used to produce PWM signals to
control the speed of the motors.
You will learn why interrupts are important and useful. You will also learn how to
programme Pybench to handle them.
Interrupts are generated from some hardware sources. In our case, these are
generated using the on-chip timers. In this lecture, we will also have a quick look at
the timers built into the microcontroller.

Lecture 10 Slide 1PYKC 19 Feb 2024 DE2 – Electronics 2

Lecture 10

Motor Drive, Polling and
Interrupt

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

2

The Pybench hardware contains many modules. The heart of these is the Pyboard,
which is a microcontroller board designed by the person who wrote MicroPython.
You have already used the microphone/amplifier module, the IMU module and the
OLED display module in previous Labs.
However, so far we have not considered what is inside the Pyboard. This
microcontroller is a much more powerful version than the Arduino you used for
Gizmo. The instruction set architecture (ISA) is the same for both – they both use
the ARM processor architecture. However, the microcontroller we use here is
significantly faster in clock speed and includes much better built-in peripherals.
Here is the pins that are brought out of the Pyboard to interface to various modules
on the Pybench hardware.

Lecture 10 Slide 2PYKC 19 Feb 2024 DE2 – Electronics 2

Pybench Board and its components

The microprocessor inside the Pyboard is known as ARM Cortex-M4.
The central part of this processor is the ARM 7 CPU. However, this ARM
core (as it is called) is more than just the CPU. Surrounding the CPU are
also many other useful modules that makes the ARM much easier to use.
For example, it contains various instruments in order to capture various
data go to and from the ARM processor. It has protection circuits and
other digital circuitry to makes the interface between the CPU and
everything external to it much easier. The most important here is the 3x
AHB (Arm Higher Performance Bus) which allows the CPU to talk to the
peripheral devices that attach to it.

3

Lecture 10 Slide 3PYKC 19 Feb 2024 DE2 – Electronics 2

ARM Cortex-M4 Processor

We are not only just using the ARM CPU. Instead, the Pyboard has a
microcontroller as its main engine. This microcontroller, the STM32F405 is
made by ST Micro, and here is an overview block diagram for this chip.
The ARM Cortex-M4 (which has all the stuff from the last slide) is only a
small part of the entire chip – it is shown in dark blue here.
The light blue parts are added to the ARM core by ST Micro. These provide
many useful functions. The ones that we use for this course are:
• Many timers for PWM signal generation, sampling clock and other

general timing functions
• USB interface to communicate with your laptop
• ADC and DAC for analogue signal capture and output
• I2C interfaces for IMU and OLED
• UART interface for WiFi module.

It is interesting to note that ARM does not make chips. They provide the
ARM-Cortex M4 design to ST Micro (who pays a royalty to ARM for the IP).
ST Micro then design all the other stuff around the ARM core to make their
product. ARM was the first company to make this fabless IP business
model successful. There are many times more ARM processors currently
being used in the world than Intel x86-based processors.

4

Lecture 10 Slide 4PYKC 19 Feb 2024 DE2 – Electronics 2

STM32F405 Microcontroller in Pyboard

The Pyboard further add to the ST Micro chip by adding an accelerometer, a
MicroSD card reader, all sort of power regulation and protection circuits.
This is a QuickRef Guide from MicroPython. It shows which pins on the
Pyboard is used for what. Most of them are programmable, meaning that
they have multiple functions. We enable them for a specify function as
required. For example, you may use UART(6) for something and this would
use pins Y1 and Y2. If you are not using these pins for UART, you could
program the pins to drive LEDs or one of the timer pins.
For this course, you will only be using limited features on the Pyboard and
the STM microcontroller. Labs 4 to 6 teach you how to program the Pyboard
to do things that are useful for the Segway Challenge.

5

Lecture 10 Slide 5PYKC 19 Feb 2024 DE2 – Electronics 2

The Pyboard

Since motor coils are essentially inductors, they have low DC impedances (resistance of the
wiring). Hence when driving motors, we need to use a special driver chip.

The driver chip you will use in Lab 5 (the TB6612) is often called the H-Bridge Driver. Shown
here is the simplified block diagram. There are four transistors connected to the supply rail and
ground. The motor is connected in the middle forming the horizontal link of the H. The
transistors are MOSFETs (metal oxide silicon field effect transistors) which are acting like a
voltage-controlled switches. When a ‘1’ or high voltage is applied to the gate control terminal,
the transistor turns ON and conduct electricity. If a ‘0’ or low voltage is applied, the transistor is
OFF.
The top diagram shows a configuration that results in the supply voltage being applied to the
left terminal of the motor. The right terminal of the motor is grounded, and the motor turns in
one direction. Reversing the control to the transistors results in the motor turning in the other
direction.
If you use an AND gate at the control input, you can also add a PWM signal to control the speed
of the motor.
Basically the ‘1’ and ‘0’ control signals are the A0 and A1 signals on the TB6612. The PWM
signal is what you apply to the input of the AND gate.
Now you know how the TB6612 works.

Lecture 10 Slide 6PYKC 19 Feb 2024 DE2 – Electronics 2

Driving a DC Motor – H-Bridge

 The DC motor needs four transistors to control its
speed and direction.

 In Lab 5, we used the TB6612 chip to drive the
motor with four transistors.

 The combination of transistors is called an H-Bridge,
due to the obvious shape. (See diagram.)

 Transistors are switched diagonally to allow DC
current to flow in the motor in either direction.

 The transistors can be Pulse Width Modulated to
reduce the average voltage at the motor, useful for
controlling current and speed.

1

10

0

0

10

1

Motor

Motor

Exercise 1 of Lab 5 is just a revision from last year’s Electronic 1 module. However,
the TB6612 is NOT the same as the motor driver DRV8866 you used last year.
TB6612 has two signals AIN1, AIN2 to control direction, and a separate PWMA
signal to control the speed.

Here are some interesting questions to ask yourself to check whether you have
learned what is expected of you:
1. Why do you need this driver chip at all? Could you drive the motor directly from

the microprocessor?
2. How are the two pins (IN1 and IN2) used to control the direction of the motor?
3. What is PWM and why is it desirable to use PWM to control the speed of the

motor instead of using analogue voltage level (e.g. from a DAC signal)?
4. What is meant by “Creating a pin object A1” in the Python code?

5. Explain how timer 2 is programmed to produce the PWM signal to drive motor
in the following lines.

6. How should you choose the frequency of the PWM signal to drive the motor?

Lecture 10 Slide 7PYKC 19 Feb 2024 DE2 – Electronics 2

Driving the motor with TB6612

Next, we use the potentiometer (5kW) to control motor speed and direction. Here
are the questions to test yourself:
1. In Micropython, how do you create an object to perform ADC conversion? Why

in this case, we use pin X11?
2. How do you define and work out the resolution of the ADC converter?
3. Explain the meaning of the statement:

4. Explain the meaning of the format statement in Python:

Lecture 10 Slide 8PYKC 19 Feb 2024 DE2 – Electronics 2

Controlling the speed with potentiometer

Next, we use the Hall Effect Sensors (two) on the motor to determine the speed of
the motor and direction of the motor. The questions to ask yourself are:

1. Refer to the sensor output signals, what happens when you increase the motor
speed?

2. How would the two sensor signals differ when you change the direction of
rotation in the motor?

3. Given the waveform of the two signals (Channel A and B) from the sensors, the
relative phase is always ±p/2. Why?

4. Given the circular magnet has 13 pole pairs, and that the gear of the motor has
a 1:30 reduction ratio, how can you derive the speed of motor (in revolutions
per second) from the number of rising edges E in a period T? (answer: 390
pulses per revolution. Therefore, the speed of motor is:

 motor_speed (in rps) = (number of pulses/390) / T in seconds

Lecture 10 Slide 9PYKC 19 Feb 2024 DE2 – Electronics 2

Measuring Motor speed with Hall Effect Sensors

motorA - Y4
motorB - Y6

motorA –Y6
motorB – Y7

• Circular magnet has 13 pole pairs
• The gearbox of the motor has a 1:30

gear ratio
• How many pulses are produced for

each revolution of the motor?
• Speed of motor (in rps) can be

measured by counting the number of
pulses in a given time window (say
100msec)

This is typically how one can measure the motor speed by polling – continuously
checking in a tight loop whether something has happened or not.

In the code above, there are TWO polling operation happening. The first if-
statement checks to see if the Hall sensor signal has a rising edge (goes from low to
high). The second if-statement checks for a time window of 100msec. By counting
the number of pulses detected in 100ms window, we can calculate the speed of the
motor using the formula:
 motor_speed (in rps) = number of pulses/39

39 because each revolution of the motor generates 390 pulses. Therefore in a
100msec period, one revolution will give us 39 pulses!

Lecture 10 Slide 10PYKC 19 Feb 2024 DE2 – Electronics 2

Pseudo code to measure speed by polling

• Initialize variables to zero: motor_speed, sensor_state, pulse_count
• Repeat forever:

Mark current time (as tic)
If sensor has gone from low to high (rising edge)
 increment pulse_count
Update sensor_state by reading hall effort sensor value
If elapse_time >= 100ms
 motor_speed = pulse_count
 reset pulse_count
 display speed on OLED as motor_speed/39

Discuss: what is the limitation of polling?

We measure the speed of rotation by counting the number of low-to-high transitions on
one of the two Hall sensor signals.

This can be achieved by polling – checking in the code when such transition has occurred. If
yes, up a counter value. Then check if 100msec has elapsed. If yes, remember the count
value and reset the counter.
Questions to ask yourself:
1. What is the purpose of these two lines?

2. How are tic and toc, which are built-in functions in Matlab, be implemented in
Micropython?

3. Explain the following codes:

Lecture 10 Slide 11PYKC 19 Feb 2024 DE2 – Electronics 2

Measure motor speed by polling

 Polling means checking
for some event in a loop,
then do something

 Here we check sensor
signal of motor A changing
from low to high in the
polling loop

 When this occurs,
increment a counter
A_count

 We also check elapsed
time = 100msec in polling
loop (tic-toc)

 If time out, save count as
speed measurement
A_speed, and reset
counter

The reason why polling is not a good method to measure speed of motor is that
microprocessor can only execute ONE instruction stream at a time. If you are checking
(polling) for rising edge, you cannot do other things. Conversely if you are doing other
things, you will miss the rising edges. That’s why in the experiment, you found that the
polling method gives a speed reading that is “noisy”, meaning that it is jumping all over the
place!
Interrupt is different. You use HARDWARE method to detect the occurrence of an event.
This forces the processor to suspend whatever it is doing at the time, and go to another
segment of the code to service the interrupt (hence we call this the “Interrupt Service
Routine” or ISR).
When finished, return to the interrupted code and continue as before.
Question to ask yourself:

1. Why is interrupt better than polling?
2. What happens if your interrupt service routine is long and complex?
3. How should you think about a system with multiple interrupts?
4. What is it meant by “saving the state fo the program”? Why is this necessary?

Lecture 10 Slide 12PYKC 19 Feb 2024 DE2 – Electronics 2

Interrupt occurs
while in instruction 4

1. Save the state of program
2. Jump to ISR
3. Stop further interrupts
4. When finish return

 Hardware method to detect event (e.g. rising edge on a pin),
generate interrupt

 Processor forced to do something else – defined in the
Interrupt Service Routine (ISR)

 Return when finished

Lab 5: The idea of interrupt

Here are two interrupt service routines. The first to handle low-to-high transition on the
senor signal from Motor A. The second to handle timer alarm which happens every
100msec.

Question to ask yourself:
1. When will the functions isr_MotorA and isr_speed_timer be executed?
2. What are the purposes of these two functions?
3. Why you need to define A_count and A_speed as global?

Lecture 10 Slide 13PYKC 19 Feb 2024 DE2 – Electronics 2

Lab 5: Interrupt Service Routines

 Need to detect and handle two types of events:
1. Rising edge on Hall effect sensor signal on Y4
2. 100ms elapsed time on a Timer

 Need two ISRs for these two interrupt events
 Need to provide a dummy variable as shown here

14

How does one set up interrupts in MicroPython using the Pyboard and the Pybench
System? First you need to include the following statement to allocate memory to store the
state of the program:

Then you have to tell that hardware that pin Y4 will generate an interrupt on every rising
edge, and that the interrupt service routine is isr_motorA:

Then, you need to program Timer 4 to time out every 100msec:

Finally, you need to tell this Timer that it should generate an interrupt when time out, and
run isr_speed_timer:

Lecture 10 Slide 14PYKC 19 Feb 2024 DE2 – Electronics 2

Lab 5: setting up the interrupts

 Allocate some buffer space to handle errors
 Specify Pin Y4 as source of interrupt, rising edge
 Define timer 4 as a 100msec period timer (10Hz)
 timer.callback (ISR) - tell timer to generate an interrupt at end of period, and

execute ISR
Specify ISR for pin rising edgeSpecify ISR for timer time-out

Once interrupt is set up properly, the main program loop only controls the motor.
Measuring the speed of motor is done automatically.

The global variable A_speed will contain the correct number of transitions in a 100msec
window ALL THE TIME, and updated every 100msec automatically.

15

Lecture 10 Slide 15PYKC 19 Feb 2024 DE2 – Electronics 2

Lab 5 – Interrupt MAGIC

 Program loop assumes A_speed has the correct value!
 There is no reference to 100ms time window, nor counting of edges.

Wheel rotating at 1 rps
will produce 39 rising
edges in 0.1 sec

16

How does one set up interrupts in MicroPython using the Pyboard and the Pybench
System? First you need to include the following statement to allocate memory to store the
state of the program:

Then you have to tell that hardware that pin Y4 will generate an interrupt on every rising
edge, and that the interrupt service routine is isr_motorA:

Then, you need to program Timer 4 to time out every 100msec:

Finally, you need to tell this Timer that it should generate an interrupt when time out, and
run isr_speed_timer:

Lecture 10 Slide 16PYKC 19 Feb 2024 DE2 – Electronics 2

Three Big Ideas

1. PWM is the efficient way to drive motors or LEDs. The H-bridge motor driver
allows PWM signal to control the speed with separate digital signals to
control the direction of the motor.

2. Interrupt is a much better way of detecting hardware events than using
polling method.

3. Interrupt makes software hard to debug because once set up, it runs in the
background all the time and is difficult to stop. So make interrupt service
routine as simple as possible.

